A novel sandwich-type photoelectrochemical immunosensor based on Ru(bpy)32+ and Ce-CdS co-sensitized hierarchical ZnO matrix and dual-inhibited polystyrene@CuS-Ab2 composites.

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address: jndxfandawei@126.com. Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.

Biosensors & bioelectronics. 2019;:124-131
Full text from:

Other resources

Abstract

A novel and sensitive sandwich-type photoelectrochemical (PEC) immunosensor was developed for the quantitative detection of β-amyloid protein (Aβ). A ITO electrode was sequentially coated with hierarchical porous zinc oxide (ZnO) microspheres with a large specific area, sensitized with tris(bipyridine)ruthenium(II) ion (Ru(bpy)32+) to achieve high visible light absorption, and modified with cerium-doped cadmium sulfide (Ce-CdS) nanoparticles to enhance the PEC response. Under the stimulation of visible light and ascorbic acid as an efficient electron donor, the photoelectric signal of ZnO/Ru(bpy)32+/Ce-CdS was 70 times that of pure ZnO. The amino-functionalized polystyrene (PS) microspheres coated with copper sulfide (CuS) was linked with a secondary antibody (Ab2) for the first time for the Aβ detection by the immunosensor. The good insulation and steric resistance of the as-prepared polystyrene@CuS-Ab2 (PS@CuS-Ab2) composite significantly weakened the photocurrent response of the immunosensor in the specific immune recognition. Under the optimal conditions, the quantitative detection of Aβ was achieved within the range of 0.001-100 ng/mL with the detection limit of 0.37 pg/mL. In addition, the PEC immunosensor is easy to make, stable and selective, which has provided a good experimental platform for the detection of disease biomarkers.